Search results for "Spin orbit torque"

showing 4 items of 4 documents

Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagn…

2020

Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Mor…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsSpintronics530 PhysicsMagnetismEnergy level splittingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGadolinium gallium garnetInsulator (electricity)Heterojunction02 engineering and technologyElectron530 Physik021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryFerrimagnetismMagnet0103 physical sciences010306 general physics0210 nano-technologySpin orbit torquePhysical Review B
researchProduct

Lateral Electric‐Field‐Controlled Perpendicular Magnetic Anisotropy and Current‐Induced Magnetization Switching in Multiferroic Heterostructures

2020

MagnetizationMaterials scienceCondensed matter physicsPerpendicular magnetic anisotropyElectric fieldMultiferroicsHeterojunctionCurrent (fluid)Spin orbit torqueElectronic Optical and Magnetic MaterialsAdvanced Electronic Materials
researchProduct

Spin-orbit-torque-induced skyrmion dynamics for different types of spin-orbit coupling

2018

Abstract We investigate current-induced skyrmion dynamics in the presence of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque corresponding to various types of spin-orbit coupling. We determine the symmetries of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque based on linear spin-orbit coupling model. We find that like interfacial Dzyaloshinskii-Moriya interaction (Rashba spin-orbit coupling) and bulk Dzyaloshinskii-Moriya interaction (Weyl spin-orbit coupling), Dresselhaus spin-orbit coupling also has a possibility for stabilizing skyrmion and current-induced skyrmion dynamics.

CouplingPhysicsCondensed matter physicsSkyrmionDynamics (mechanics)02 engineering and technologySpin–orbit interactionCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsQuantum mechanics0103 physical sciencesHomogeneous spaceTorqueCondensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary Astrophysics010306 general physics0210 nano-technologySpin orbit torqueJournal of Magnetism and Magnetic Materials
researchProduct

Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems

2018

Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devi…

PhysicsCzechCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesGeneral Physics and AstronomyLibrary science02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslanguage.human_language3. Good health[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical scienceslanguageCondensed Matter::Strongly Correlated ElectronsChristian ministryEuropean commission010306 general physics0210 nano-technologySpin orbit torqueComputingMilieux_MISCELLANEOUS
researchProduct